Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 1063, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875760

RESUMO

Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation in the host despite the induction of inflammation. To circumvent inflammation, bacteria must resist the bactericidal activity of professional phagocytes, which constitute a first line of host defense against pathogens. Interactions between phagocytic cells and B. cereus are still poorly characterized and the mechanism of resistance to the host immune system is not known yet. We have previously shown that the spores are phagocytosed by macrophages but survive and escape from these cells. The metalloprotease InhA1 is a key effector involved in these processes. inhA1-deficient spores are retained intracellularly, in contrast to the wild type strain spores. NprA is also a B. cereus metalloprotease able to cleave tissue components such as fibronectin, laminin, and collagen. Here, we show that NprA, concomitantly secreted with InhA1 in the B. cereus secretome, is essential to promote bacterial escape from macrophages. We show that InhA1 cleaves NprA at specific sites. This cleavage allows liberation of the mature form of the NprA protein in the supernatant of the wild type strain. This mature form of NprA is actually the principal effector allowing bacterial escape from host macrophages.

2.
PLoS One ; 11(10): e0163321, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711223

RESUMO

Production of reactive nitrogen species is an important component of the host immune defence against bacteria. Here, we show that the bacterial protein Mfd (Mutation frequency decline), a highly conserved and ubiquitous bacterial protein involved in DNA repair, confers bacterial resistance to the eukaryotic nitrogen response produced by macrophage cells and during mice infection. In addition, we show that RecBC is also necessary to survive this stress. The inactivation of recBC and mfd genes is epistatic showing that Mfd follows the RecBC repair pathway to protect the bacteria against the genotoxic effect of nitrite. Surprisingly given the role of Mfd in transcription-coupled repair, UvrA is not necessary to survive the nitrite response. Taken together, our data reveal that during the eukaryotic nitrogen response, Mfd is required to maintain bacterial genome integrity in a NER-independent but RecBC-dependent pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Exodesoxirribonuclease V/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Nitrogênio/farmacologia , Fatores de Transcrição/metabolismo , Animais , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/genética , Bacillus cereus/fisiologia , Proteínas de Bactérias/genética , Células HeLa , Humanos , Camundongos , Viabilidade Microbiana , Mutação , Óxido Nítrico/metabolismo , Células RAW 264.7 , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
3.
Sci Rep ; 6: 29349, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435260

RESUMO

Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Reparo do DNA , Imunidade Inata , Espécies Reativas de Nitrogênio/metabolismo , Shigella flexneri/metabolismo , Fatores de Transcrição/metabolismo , Animais , Bombyx , Dano ao DNA , DNA Bacteriano/genética , Escherichia coli/metabolismo , Deleção de Genes , Humanos , Mitomicina/química , Monócitos/metabolismo , Mutagênese , Mutação , Neutrófilos , Nitrogênio , Fagocitose , Fenótipo , Transcrição Gênica , Fatores de Virulência/metabolismo
4.
J Invertebr Pathol ; 113(3): 205-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23598183

RESUMO

Bacillus thuringiensis (Bt) is a spore-forming entomopathogen broadly used in agriculture crop. The haemolysin HlyII is an important Bt virulence factor responsible for insect death. In this work, we focused on the regulation of the hlyII gene throughout the bacterial growth in vitro and in vivo during insect infection. We show that hlyII regulation depends on the global regulator Fur. This regulation occurs independently of HlyIIR, the other known regulator of hlyII gene expression. Moreover, we show that hlyII is highly expressed when iron is depleted in vivo. As HlyII induces haemocyte and macrophage death, which are involved in the sequestration of iron upon infection, HlyII may induce host cell death to allow bacteria to gain access to iron.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/genética , Ferro/fisiologia , Mariposas/microbiologia , Animais , Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Larva/microbiologia
5.
PLoS One ; 8(2): e55085, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405113

RESUMO

Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. We have previously shown that B. cereus Haemolysin II (HlyII) induces macrophage cell death by apoptosis. In this work, we investigated the regulation of the hlyII gene. We show that HlyIIR, the negative regulator of hlyII expression in B. cereus, is especially active during the early bacterial growth phase. We demonstrate that glucose 6P directly binds to HlyIIR and enhances its activity at a post-transcriptional level. Glucose 6P activates HlyIIR, increasing its capacity to bind to its DNA-box located upstream of the hlyII gene, inhibiting its expression. Thus, hlyII expression is modulated by the availability of glucose. As HlyII induces haemocyte and macrophage death, two cell types that play a role in the sequestration of nutrients upon infection, HlyII may induce host cell death to allow the bacteria to gain access to carbon sources that are essential components for bacterial growth.


Assuntos
Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose-6-Fosfatase/metabolismo , Proteínas Hemolisinas/genética , Processamento Pós-Transcricional do RNA , Proteínas de Bactérias/genética , Morte Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Proteínas Hemolisinas/metabolismo , Macrófagos/metabolismo
6.
Cell Microbiol ; 13(1): 92-108, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20731668

RESUMO

Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. The precise mechanisms and the bacterial factors allowing B. cereus to circumvent host immune responses remain to be elucidated. We have previously shown that B. cereus induces macrophage cell death by an unknown mechanism. Here we identified the toxic component from the B. cereus supernatant. We report that Haemolysin II (HlyII) provokes macrophage cell death by apoptosis through its pore-forming activity. The HlyII-induced apoptotic pathway is caspase 3 and 8 dependent, thus most likely mediated by the death receptor pathway. Using insects and mice as in vivo models, we show that deletion of hlyII strongly reduces virulence. In addition, we show that after infection of Bombyx mori larvae, the immune cells are apoptotic, demonstrating that HlyII induces apoptosis of phagocytic cells in vivo. Altogether, our results clearly unravel HlyII as a novel virulence protein that induces apoptosis in phagocytic cells in vitro and in vivo.


Assuntos
Apoptose , Bacillus cereus/patogenicidade , Proteínas de Bactérias/toxicidade , Proteínas Hemolisinas/toxicidade , Macrófagos/microbiologia , Fatores de Virulência/toxicidade , Animais , Bacillus cereus/genética , Proteínas de Bactérias/genética , Bombyx , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Deleção de Genes , Proteínas Hemolisinas/genética , Humanos , Larva/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Virulência , Fatores de Virulência/genética
7.
J Bacteriol ; 192(10): 2638-42, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20233921

RESUMO

Bacillus cereus EntFM displays an NlpC/P60 domain, characteristic of cell wall peptidases. The protein is involved in bacterial shape, motility, adhesion to epithelial cells, biofilm formation, vacuolization of macrophages, and virulence. These data provide new information on this, so far, poorly studied toxin and suggest that this protein is a cell wall peptidase, which we propose to rename CwpFM.


Assuntos
Bacillus cereus/enzimologia , Bacillus cereus/patogenicidade , Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Parede Celular/enzimologia , Peptídeo Hidrolases/metabolismo , Virulência/fisiologia , Animais , Bacillus cereus/crescimento & desenvolvimento , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Células HeLa , Humanos , Camundongos , Mariposas , Peptídeo Hidrolases/genética , Virulência/genética
8.
J Bacteriol ; 192(1): 286-94, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19837797

RESUMO

The virulence of Bacillus cereus requires that bacteria have the capacity to colonize their host, degrade specific tissues, and circumvent the host immune system. To study this aspect of pathogenesis, we focused on three metalloproteases, InhA1, InhA2, and InhA3, which share more than 66% identity. The expression of these metalloprotease genes was assessed by transcriptional fusions with a lacZ reporter gene. The expression profiles suggest a complementary time course of InhA production. Indeed, the genes are simultaneously expressed but are oppositely controlled during stationary phase. We constructed single and multiple inhA mutants and assessed the bacterial locations of the proteins as well as their individual or additive roles in macrophage escape and toxicity, antibacterial-peptide cleavage, and virulence. InhA1, a major component of the spore exosporium, is the only InhA metalloprotease involved in bacterial escape from macrophages. A mutant lacking inhA1, inhA2, and inhA3 shows a strong decrease in the level of virulence for insects. Taken together, these results show that the InhA metalloproteases of B. cereus are important virulence factors that may allow the bacteria to counteract the host immune system.


Assuntos
Bacillus cereus/enzimologia , Bacillus cereus/patogenicidade , Proteínas de Bactérias/metabolismo , Metaloproteases/metabolismo , Sequência de Aminoácidos , Animais , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Bombyx/microbiologia , Células Cultivadas , Regulação Bacteriana da Expressão Gênica , Larva/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Dados de Sequência Molecular , Mutação , Filogenia , Homologia de Sequência de Aminoácidos
9.
Appl Environ Microbiol ; 70(8): 4784-91, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15294815

RESUMO

Bacillus thuringiensis vegetative cells are known to be highly pathogenic when injected into the hemocoel of susceptible insect larvae. This pathogenicity is due to the capacity of B. thuringiensis to cause septicemia in the host. We screened a B. thuringiensis mini-Tn10 insertion library for loss of virulence against Bombyx mori larvae on injection into the hemocoel. Three clones with attenuated virulence were isolated, corresponding to two different mini-Tn10 insertions mapping to the yqgB/yqfZ locus. Single disruptions of the yqgB and yqfZ genes did not affect virulence against B. mori. In contrast, the inactivation of both genes simultaneously reproduced the effect of the mini-Tn10 insertion and resulted in a significant delay to infection. The double DeltayqgB DeltayqfZ mutant was also nonmotile, and its growth was affected at 25 degrees C. We analyzed lacZ transcriptional fusions and detected promoter activity upstream from yqgB at 25 and 37 degrees C. Overall, our findings suggest that the yqgB and yqfZ genes encode adaptive factors that may act in synergy, enabling the bacteria to cope with the physical environment in vivo, facilitating colonization of the host.


Assuntos
Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Virulência/genética , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Bombyx/microbiologia , Elementos de DNA Transponíveis , Larva/microbiologia , Dados de Sequência Molecular , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Análise de Sequência de DNA , Virulência , Fatores de Virulência/metabolismo
10.
EMBO Rep ; 3(1): 76-81, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11751580

RESUMO

The aggregation of the two yeast proteins Sup35p and Ure2p is widely accepted as a model for explaining the prion propagation of the phenotypes [PSI+] and [URE3], respectively. Here, we demonstrate that the propagation of [URE3] cannot simply be the consequence of generating large aggregates of Ure2p, because such aggregation can be found in some conditions that are not related to the prion state of Ure2p. A comparison of [PSI+] and [URE3] aggregation demonstrates differences between these two prion mechanisms. Our findings lead us to propose a new unifying model for yeast prion propagation.


Assuntos
Príons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Glutationa Peroxidase , Dados de Sequência Molecular , Fenótipo , Príons/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...